

Experimental Validation of 1D model for photovoltaic/ thermal (PV/T) modules

Laetitia Brottier^{1.3}. David Cheze². Mathieu Mariotto². Franck Medlege². Guillaume Razongles² and Rachid Bennacer³ ¹ DualSun. Marseille; ² CEA. Le Bourget-du-Lac ; ³ LMT/ENS-Cachan/CNRS/Université Paris Saclay. Cachan | FRANCE

Numerical PV/1	F model	Prototypes and testing				
ergy balance for a quasi 1D simplified model	Symbol Meaning Units	Description of the constitutive layers for the 9 prototypes tested				

An en

 $\left(H_{FLUID}.(T_{PV}(x) - T_F(x)) = H_{BACK}.(T_F(x) - T_{BACK}) + \dot{m}.Cp.\frac{dT_F}{dx} (eq.2)\right)$

Module outlet temperature and electrical power are then deduced thanks to an iterative approach on photovoltaic temperature (T_{PV}) .

$T_{F.OUT} = (T_{F.IN} - C) \times e^{-D.Width} + C$	(eq. 3)
$T_{PV} = \mathbf{A} \times T_{F.MEAN} + \mathbf{B}$	(eq. 4)

D. C allu D	module characteristics	
Ср	Heat capacity	W/kg/K
G	Solar irradiation	W/m²
н	Global coefficient	W/m²/K
h _{RAD}	Radiative coefficient	W/m²/K
H _{WIND}	Convective coefficient on top plate due to the wind	W/m²/K
H _{FLUID}	Convective coefficient on the plate due to the water	W/m²/K
ṁ	Water Flow rate	L/s
Т	Temperature	К
V _{WIND}	Wind velocity	m/s
Width	Width of solar collector	m
X	Water flow direction	
t _α	Transmitto-absorption on diffuse. direct and horizontal irradiation	-
η _{PV}	Electrical efficiency	-
η _{τΗ}	Thermal efficiency	-

Subscript	Meaning					
Α	Ambient					
BACK	Between fluid and rear surface					
F	Fluid					
FLUID	Between PV cells and fluid					
PV	Photovoltaic cells					
ТОР	Between cells and ambient					

In non-null flow rate cases. equations were simplified (Solar Keymark standard directives)

	Glass	EVA	Cells	EVA	BS	EVA	Stainless Steel Heat exchanger / PV surface	Insulation (equivalent thickness given for k=0.033W/(m.K))	
	mm	mm	-	mm	mm	mm	-	mm_equiv	
1	2	0.6	60 (MPPT)	1.2	0.4	1.2	74%	NO	
2	2	0.6	60 (OC)	1.2	0.4	1.2	74%	NO	
3	2	0.6	60 (MPPT)	1.2	0.4	1.2	74%	39.6mm	
4	2	0.6	60 (MPPT)	1.2	0.4	1.2	74%	24.8mm	
5	2	0.6	60 (MPPT)	0.6	0.4	0.6	74%	NO	
6	4 & Low E	0.6	60 (MPPT)	1.2	0.4	1.2	74%	NO	
7	2	-	-	0.6	0.4	0.6	74%	NO	
8	-	-	-	-	-	-	exch only	NO	
9	2	0.6	40 (OC)	1.2	0.4	1.2	100%	NO	

Ex of prototype (1669*982mm²)

Pictures of the artificial sunlight test bench (1000W/m². wind speed 1.5m/s. $T_{F.in}$ =20..70°C)

Photovoltaic and thermal results for the 9 prototypes

Relations between the 1D-model and the linear formula

	a0 (%)	a1 (W/K/m²)	Wp *	β _{wp} (%/°C)		a0 (%)	a1 (W/K/m²)	Wp *	β _{wp} (%/°C)
1	50.2%	12.8	238	-0.048	6	49.8%	13.0	225	-0.050
2	59.9%	13.1	-	-	7	66.1%	13.3	-	-
3	49.6%	10.6	238	-0.050	8	39.8%	11.3	-	-
4	49.8%	11.4	238	-0.050	9	75.7%	17.9	-	-
5	52.8%	13.1	245	-0.055	:	*limiting cell of	equivalent pov	ver at 1000W	/m ² and 25°C

Model validation

Introduction of two new factors in the model

Two parameters were introduced to take better into account for the specific behavior of the Dualsun stainless steel heat exchanger :

- Effect of the fin

⇒ Correction of the ratio Stainless Steel Heat exchanger / PV surface 82% instead of 74%

 Unknown heat exchange between the fluid and the stainless steel (which was supposed fixed at 800 W/(m².K))
⇒ Correction of the length of exchange 770mm instead of 856mm

Visualization of model and experimental results

Thermal power (W)

Root-mean-square error for each model/ test fitting with the corrected model

Test	1	2	3	4	5	6	7	8	9
RMSE	8.74	17.14	26.39	15.09	29.98	20.33	28.35	25.42	66.98

The simplified model (1D) gives a good fit with the 9 first prototypes performance results. These encouraging results must be confirmed with further tests with a polymeric heat exchanger.

© DualSun – 30 november 2017 – SHC SWC poster